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A large deviation property is established for noninteracting infinite particle 
systems. Previous large deviation results obtained by the authors involved a 
single /-function because the cases treated always involved a unique invariant 
measure for the process. In the context of this paper there is an infinite family of 
invariant measures and a corresponding infinite family of/-functions governing 
the large deviations. 
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1. I N T R O D U C T I O N  

Let X be a countable set and let X0, X 1, X2,... be a Markov chain with 
state space X and transition probabilities {z~v}. Probabilities and expec- 
tations for this chain starting from a point x ~ X  will be denoted by P~{ } 
and E~{ }, respectively. We make five assumptions about this chain: it is 
irreducible, transient, the matrix {Tr~y} is doubly stochastic, and if for any 
finite set F o X  we define ZF=inf j>I{XjEF},  then we assume 
limx_ ~ P~{'CF< o(3 } = 0, i.e., for any e > 0 there exists another finite set F1 
such that F c F I  and x e F 1  implies P~{'CF< oo} <& Finally, we assume 
that the Green's function G(x, y) for the chain has the property 
supx ~ x G(x, x) < ~ .  

For each x e X, let no(x ) be a nonnegative integer giving the number of 
particles at x initially, so that {no(x), x ~ X} is the initial configuration of 
particles. At time 1 all of these particles move independently according to 
the transition probabilities {TZxy }, giving us a new configuration 
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{nl(x),  x ~ X}. There is no interact ion here; all the no(x) particles at x leave 
independent ly of  one another  and for any other  point  y e X, the no(y ) par-  
ticles at y leave independent ly  not  only of each other, but  of  all the par-  
ticles at x. At t ime 2 the process is repeated, giving us a new configurat ion 
{n2(x), x~X}  and so on. If  we let N =  {0, 1, 2,...}, then Z = N  x is the space 
of all configurations,  and if at t ime j we have a par t icular  configurat ion 
n ( ' )  e Z, we can ask for the transit ion probabi l i ty  7i(n(.), n ' ( ' ) )  that  at t ime 
j + 1 we have configurat ion n '( .  ) E Z. 

F r o m  our  assumptions ,  the transi t ion probabi l i ty  7~(n(-), n ' ( . ) )  is 
given through its m o m e n t  generat ing function by 

= H { e x p [ - X ( y ) ] }  ~xy (1.1) 
x E X  

where 2: X ~ R vanishes outside some finite subset of  X. 
I m p o r t a n t  for us will be the family _A of ~-finite invar iant  measures  

c~(-) for ~xy, i.e., for all x~X, 0~<c~(x)< oe, Zx~x~(x)~=~(y), and we 
assume ~ ( . ) e l  0. Since the chain is irreducible, if c~(.) vanishes at any 
point,  it vanishes everywhere,  so actually c~(x)> 0 for all x ~ X. 

Fo r  each c~ e _A we define a measure  P~ on Z as follows: for each x e X 
the number  of particles at x, i.e., n(x), is Poisson-dis t r ibuted with mean  
c~(x) and {n(x), x e X} are mutual ly  independent.  

It  is well known and, using (1.1), easy to show that  for each e E _A, P~ 
is an invariant  measure  for r~(., .). Also, using the K o l m o g o r o v  zero-one 
law, we can show that  for each c~ e _A, P~ is an ergodic measure  on Z. 

Fo r  each x e X and any positive integer N, let 

no(x) +nl(x) + "'" + nN_,(X) 
LN(X) = N 

i.e., the average number  of particles at site x during the first N steps. Let X 
be the space of sequences of particle configurat ions on X, i.e., {nj( ') ,  
j = 0, 1, 2,... }. Any initial configurat ion n(. ) of particles and r~(., �9 ) generate 
a probabi l i ty  measure  on X which we will denote  by _Pn [-we will often in 
the sequel use n(" ) instead of no(" ) as a generic no ta t ion  for the initial con- 
f igurat ion] .  Let _M be the space of ~-finite measures  a on X. Then, for each 
N, L u maps  ~" into _M, and we use this mapp ing  to define a probabi l i ty  
measure Q~,N on _M by Qn,u =-Pn 'LN 1, i.e., if A ~ _M, then Qn,N(A)= 
_P~{LNEA}. 

Since, for each c~ 6 _A, P~ is an invar iant  measure  for r~(-, �9 ) and each P~ 
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is ergodic, it follows from the ergodic theorem that as N ~  ~ ,  Qn,N ~ ~ 

where, of course, ~ is the Dirac measure on M concentrated at e(-). What  
is essential is that the statement Q,,N ~ ~ ~ holds for almost all n( " ) ~ Z with 
respect to P~-measure. This makes sense since if el ~ e2, then P~ and P~2 
are mutually singular measures on Z. 

In this paper we prove that a large,deviation property holds for the 
Qn,N measure, i.e., we find a functional I~(a) that for each ~ ~ A maps M 
into [0, ~ ] such that for each closed set C c M, 

1 
ulifno~ F l o g  Q,,N(C)<~ -- inf Is(a  ) (1.2) 

o ' ~ C  

and for each open set G c _M, 

~ l o g  Qn,N(G)>/ -- inf I~(a) (1.3) lim 
N ~ o c  2 u  a c G  

where both of the statements (1.2) and (1.3) hold for almost all n( .)  with 
respect to P~-measure on Z. 

This last "almost all" statement emphasizes what is new in this paper 
relative to our previous work (see Refs. 1-3 for the theory, and Refs. 4-6 
for some applications), namely that we have here more than one invariant 
measure. In our earlier papers we always imposed sufficient hypotheses on 
the underlying process so that there was a unique invariant measure and 
hence a single /-function governing large deviations. Here the underlying 
process has a whole family of invariant measures {P~, ~ ~ _A }, and we have 
an / - func t ion  therefore corresponding to each ~ ~ A. 

We obtain an explicit expression for I~(a), which we discuss now. Let 
V be the space of functions V: X ~ ~ that vanish outside some finite subset 
of X and have the property that for some x e X, 

u v ( x ) = u ( x ) = E ~  exp ~ V(J(j) <oo  (1.4) 
j o 

It is an elementary consequence of the irreducibility hypothesis (see 
first few lines of Lemma 2.1 below) that u(x) < oo for all x ~ X if it is finite 
for any x. 

Now, for e e _A and a s _M, define 

sup f z z "x'l   tl (1.5) 
V c V  t . x ~  X x E X  ) 

and this is the/ - funct ion that enters into (1.2) and (1.3). For a given a ~ _A, 
I~(a) turns out to be finite if and only if a behaves "asymptotically" like ~. 
This is made explicit in Theorem 3.3 below. If a ~ _A and fi ~ _A and a ~ _M 
exists such that both I~(a) < oo and I~(a) < 0% then ~ -= fl (Lemma 3.4). In 
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Section 3 other properties of this/-function are established. In Section 2 we 
prove the upper bound (1.2) and in Section 4 we prove the lower bound 
(1.3). 

Once such a large-deviation property for Qn,N is established, i.e., once 
one has an Is(a) for which (1.2) and (1.3) hold, then one easily obtains (v) 
an asymptotic result for certain expectations with respect to the -Pn 
measure. To make this explicit, let 45: _M-~ ~ be bounded and continuous; 
then (1.2) and (1.3) imply 

1 lo ~ EP,~eN~(LN(.)) I lim ~ ~ - / X = sup[45(cr)--I~(~)] (1.6) 
N ~ c ~  ~ e m  

for almost all n ( ' ) e  Z (P~-measure). 
To obtain large-deviation properties where more than one invanant 

measure is involved, the present context of infinite-particle systems is 
natural. Here, in the simplest situation of noninteracting particles, we 
obtain an explicit /-function (t.5) in terms of which (1.2) and (1.3) are 
proved. In the case of infinite-particle systems with interaction the problem 
is to find the appropriate /-function in terms of which the analogues of 
(1.2) and (1.3) can be established. 

Some interesting large-deviation results for infinite-particle systems 
Griffeam. Lee (s) with interaction have been found by Cox and . -  <9) obtained a 

large-deviation property with explicit /-function for an infinite-particle 
system with no interaction, but where the particles move according to 
independent Brownian motions with constant drift. 

2. T H E  U P P E R  B O U N D  

Using the definitions and notation of the introduction, let V~ V and C 
be a closed subset of _M. Then, 

E e~ exp ~ n/(x) V(x) 
j x a X  

=EO'~{exp[ x.X~(x) 

~> EO".N {exp [ x~x~r(x) ~e 
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In Theorem 2.10 below we show 

lim log E e" exp ~ nj(x) V(x) 
N ~ o 3 1 u  j x 6 X  

-- ~ ~z(x)(1--e v(~))u(x) (2.2) 
X ~ X "  

for almost all n ( ' )~  Z (P~-measure). We recall from the introduction that 

- E x exp V 
j 0 

and that if ~1 ~ ~2, then P~ and P=2 are mutually singular measures on Z. 
Thus, from (2.1) and (2.2) we conclude 

lira l l o g  Qn,N(C) 
N ~  

~< - inf ~ a(x) V(x)+ ~ ~ ( x ) ( 1 - e  v(x))u(x) 
o ' G C  

x ~ X .~: ~ X 

= - i n f  [ ~ a ( x ) V ( x ) -  ~ ~ ( x ) ( 1 - e  v~))u(x)l (2.3) 
a ~ C  L x ~ X  x ~ X  

for almost all n(')eZ (P~-measure). Since (2.3) holds for any Ve_V, we 
obtain 

1 
lim F l o g  Qn,N(C) 

N --+ o3 

.~ -su~  ,nf [ Z ~I~ ~ t -  Z ~t~'-~-~'~'t"~l] ~.4~ 
V E  V ~ E C  l - x ~ X  x E X  

for almost all n ( . ) e  Z (P~-measure). In Lemma 2.11 below we show that, 
because C is closed, (2.4) implies 

1 
lim F l o g  Qn, N(C) 

N ~ o o  

in, su~ [ ~ ~(x~ ~I~- Z ~(~I(1 e ~'~'t-/x/] 
~ x E C  V ~  V x ~ X  x ~ X  

= - inf I=(~) (2.5) 
c r f f C  

for almost all n ( . ) e  Z (P~-measure). 
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Now (2.5) is just the upper bound (1.2) of the introduction, and hence 
what needs to be proved in this section is (2.2) and Lemma 2.11. We prove 
(2.2) as Theorem 2.10 after a succession of preliminary lemmas. 

Let _V1 be the space of functions V: X--* ~ such that V vanishes out- 
side some finite subset of X and 

u(x) = E~ exp V < oo 
j o 

for all x ~ X. 
For F a finite subset of X, let r = re  = infj~ 1 {gj ~ F}, i.e., the first entry 

time of the Markov chain into F, and let nxyF _--p~{X~=y, r <  oo}. Let MF 
be the matrix (~(~ X, y ~ F}, where V vanishes outside F, and let 
p(mF)  be the spectral radius of M r. Define _ V  2 to be the space of functions 
V : X ~  such that V vanishes outside some finite set F = F v  and 
p(MF) < 1. 

kemma 2.1. _V=_VI=_V2. 

Proof. Let Ve V and x e X such that 

u(x) -- E~ exp V < oo 
j 0 

Since the chain is irreducible, for any y e X there is a positive integer k such 
that -(~) > 0. If we let 1~, -KV 

IlVtl = s u p  I V(z)l  
z E  F =  s u p p  V 

then 

so that 

~> [ e x p ( - k  II VII )] E~ exp 
j k 

/> [ e x p ( - k  Ilgll)] E~ exp V ; X k = y  
j k 

]} = [ e x p ( - k  I1rll)] ~)E~ exp V(Xj) 
j o 

{[  ]t Ey exp j~o V(Xj) <oo 

which means V e V 1 and hence _V=_V1. 
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To show V~ c_//2, let Ve_V1, so that 

u(x) = E2 exp V(Xi) < oo 
0 

for all x e X .  Let F o X  be the finite set outside of which V vanishes, and 
F with r and rCxy as defined just before this lemma, let 

F 

y ~ F  

We note that, since the chain is transient, qx > 0 for at least one x e F. 
Now, for any x e F ,  using the strong Markov property of the chain 

with respect to 3, 

= [exp V(x)~ E~ exp V ; z < o0 
1 

{ ,-J } + [exp V(x)] E~ exp V ; r - -  oo 
j i 

= [exp V(x)] E~ exp V ; r < 
1 

+ [-exp V(x)] P~{z = ~ } 

]} -- [exp V(x)] 2 ~xyE~e ~ exp V(Xj) + [exp V(x)] rl.~ 
y ~ F  ~- t - j = 0  

= [exp V(x)] ~ ~zFyu(y) + [exp V(x)] t/x (2.6) 
y ~ F  

Let u be the column vector with entries {u(x), x e F } ,  eVq be the column 
vector with entries {eV(~)tlx, x e F } ;  then, with MF the matrix defined 
above, we can rewrite (2.6) as 

( I -  MF) u = eVq (2.7) 

Since (2.7) has the strictly positive solution 

u ( x ) - E  x exp V , x E F  
0 

we conclude that p(MF) < l,  i.e., Ve_V 2. 
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Finally, to show _V 2 c _Va, let Ve V 2 with finite support F. Since we are 
now assuming p(MF)< 1 and, as noted earlier, at least one entry in eVrl is 
strictly positive, the matrix equation ( I -  MF) u = evtl for u has a solution 
~(x), x e F. Indeed, 

ft = ( I -  MF)-~(eVq) (2.8) 

and since the chain is irreducible, ~ =  { i f (x ) ,xeF}  has strictly positive 
entries. We extend the column vector ~ by defining for y 6 F, 

~(y) = E ~fz~(~) + P ; { ~  = 0o } 
z E F  

F (2.9) = Z ~ f z ~ ( z ) + l -  Z ~z  
z c F  z c F  

so that now ~ is a column vector having entries for all the elements of X. 
Thus, for any x e X, 

E ~x.vu(Y) = E ~xyU(y) + E Z ~ x y U ( y )  
. v ~ X  >'~F yq~F 

= E ,~x,i(y)+ Z ~x, E ~fzi(Z)+ E ,~x,P;{~= oo } 
v ~ F  v 6 F  z e F  yq~F 

(2.t0) 

But, 

E ~La(z) = E~{i(XT); r < oo } 
z ~ F  

= E~{i(XT); ~ = 1 } + E~{~(X~); 2 ~< ~ < oo } 

y e F  y ( i F  z E F  

and using this in (2.10), we have, for any x e X ,  

Z ~ZxyU(Y)= Z ~Fu(z) + Z =xyP;{ ~ = o0} 
y ~ X  z ~ F  y 6 F  

F - ~ __ = 2 ~xzU(z) + P x { r -  oo } 
z c F  

First consider (2.11) for x • E  Using (2.9), we obtain 

(2.11) 

~ x y U ( y )  = U ( X )  

y E X 
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On the other hand, if x e F ,  then (2.11) and (2.8) state that for VEV2, 

z~F 

zEF 

= (MFU)x + (eVq)x = if(x) 

Since V vanishes outside of F, we conclude that for all x E X, 

y~X 

or, with the abbreviated notation (~)(x)=Zy~XZCxy~(y) ,  we have for all 
x ~ X  

e v(x)(zcf~)(x) = ~(x) (2.12) 

Identity (2.12) holds for a V~ V 2 and ~ defined by (2.8) and (2.9). In 
this connection we should note that for Ve_V the same identity holds for 

u(x)= E ~ exp 
x 

j o 

]} = [exp V(x)l E~ exp j~l  V(Xj) 

]} = [exp V(x)] 2 ~x,E~ exp V(Xj) 
y ~ X  j 0 

= [exp V(x)](rcu)(x) (2.13) 

Since if(x) is strictly positive for x e F, we have 

0 < inf if(x) ~< sup if(x) < oo 
x ~ F  x e F  

From this and (2.9) we see that for all y e X  

0 < rain[! ,  inf 8(z)] ~< fi(y) ~< max[sup t~(z), 1] < oo (2.14) 
z G F  z E F  

Now, (2.12) implies that the sequence of random variables 

["= ] Z~=if(X~)exp ~ V(Xj) 
j o 
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is a martingale because if _F,_ 1 is the a-field up to time n - 1, 

E ; { Z n l L _ , }  = exp V(Xs) (rca)(X._ ~) 
j o 

{[5' = exp V ~(X. i ) = Z n - i  
0 

Thus, for all x e Z, 

E~ exp V fi(X. = ~(x) 
j = O  

and from this and (2.14) we conclude, for all xeZ, 

E~ exp V(Zj) ~<inf x ~ ( y ) <  oo 
J 

Finally, from Fatou's lemma, this last inequality implies 

(2.15) 

u(x)= E~, {exp[j~=o V(Xs)]} < ~ 

for all x ~ X, i.e., Ve _V1, and the lemma is proved. 

I . emma 2.2. Let F be a finite subset of X and let ~b(x)= 
P~ {infj ~>1 (Xs ~ F) < ~ }. Then for all x ~ X, lira, _ ~ E~ { ~b(Xn) } = 0. 

Proof. This is obvious, since 

Ex~{~b(X,,) } = P~{ XjE F, j> n} 
= P~{last visit of chain to Foccurs after time n} 

and the last probability must go to 0 as n ~  ~ because the chain is 
transient. 

Coro l l a ry .  With ~(x) defined for xeF by (2.8) and for xCF by 
(2.9), we have for all x~X, 

lim E~{IzT(x,, ) -  11} = 0  
n ~ o o  

Proof. With ~b(x) as defined in Lemma 2.2, we have for x r F, 

~(x)= Z rc2~(Y)+ 1-- Z ~xy 
y ~ F  y ~ F  

- - E  [1  x,u(y) + - 0(x)] 
y ~ F  
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Thus, 

gx~{ I z~(Xn)- 11} ~ sup if(y) Ex~ {qi(Xn) } + E~{~b(Xn) } 
y e F  

and from the lemma, for all x e X, 

lim E2{t~(X~)- 11} = 0  
n ~ o o  

In this proof there was no loss in generality by taking t~(x) as defined 
for x ~ F, since F is finite and the chain is transient. 

I . e mma  2.3. With ~(x) defined by (2.8) for x E F  and by (2.9) for 
x ~ F, we have if(x) = u(x) for all x e X. 

Proof. We showed in (2.15) that for all x e X ,  

~(x)=E~ exp ~ V ~(XN 
/ =  0 

and, because of the corollary to Lemma 2.2, the present lemma will follow 
if we can show that 

j = 0  

are uniformly integrable. Now, by (2.14), 

0 < inf ~(y) ~< sup ~(y) < oo 
y E X  . v e x  

so it suffices to show that {exp ~2y=01 V(J[j)} are uniformly integrable. This 
follows if, for some 2 > 1, 

{ L N-1 sup E~ exp 2 ~ V( ~<const 
N j= O 

But in Lemma2.1 we showed that if Ve_V, then it is in V 2, i.e., 
p(Mg)<l ,  where M F is the matrix {eV(X)rr F x, yEF}.  Let M F =  
{e~Y(x)~Fy, X, y e F}. Since the matrix is finite, its spectral radius p(M () is a 
continuous function of 2. Since the spectral radius is strictly less than 1 
when 2 = 1, there then exists 2 > 1 such that p(M F) < 1 also. But, again by 
Lemma 2.t, this means for that 2, 2Ve_V, which implies 

sup E~ exp 2 Y" V(Xfl ~<const 
N j = 0  

822/46/5-6-27 
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For any ~s_A we introduce the Markov chain time-reversed with 
respect to ~, i.e., for x, y EX, let n~y(~)=ny~(y)/~(x). The n~y(e) are 
transition probabilities, since 

1 ~(x) 

y6X \ , ' y ~ X  

=1 

Since n~)(e)=n~)c~(y)/c~(x), the time-reversed chain is also irreducible. 
Since the original chain is transient, it has a finite Green's function, i,e., for 
all x, y~X, G(x, y ) = Z ~  0 rc~)< oe But the Green's function for the 
reversed chain G~(x, y) is given by 

'~'~ ~(x) = ~(x) 
k = O  k = O  

G ( y ,  x )  < co 

which means the reversed chain is also transient. We denote probabilities 
and expectations with respect to the reversed chain by p~(~l{ } and 
E~(~){ }, respectively. 

Let V ~ be the space of functions V: X ~  R that vanish outside some 
finite set and such that for some x ~ X, 

E~(~) {exp Ij~=o V(Xj)l} < ~176 

Now, in the proof of Lemma 2.1, we used only the hypotheses that the 
original chain was irreducible and transient. Hence, Lemma 2.1 applies also 
to the time-reversed chain and thus _V~= _V~ =_V~. 

L e m m a  2.4 .  For any ~e_A, 

V= V ~ 

Proof. Let ~ ~ A, F be a finite subset of X, and x, y c F. Then, 

+ 2 ~x.,(~) nz,..(~) ~ . . / ~ )  + " "  
2 t , Z 2 E  F c 

But 
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so that 

F.  , o~(y) , v. co(y) o~(zl) 
~xy(~) = rCyx ~ + 2_, rCyz~ ~zlx t- o~(~) ~, ~,~ ~ ~(x) 

__ o ~ ( y )  F 

~(x) ~yx 

Hence, for a V vanishing outside F, the matrix 

MF(~)= v~x) g y ~ F }  =~  rtvxT(-f~,x, y e F }  {e rCxy(Cr x, [eV{X) F ~(Y) 

Since MF = {eZ(X)~r F x, y e F } ,  we see that if we let D be the diagonal " 'xy  
matrix 

D = (e-Vtv)~(y) 6 ..... x, y e F )  

then 

M F ( ~  ) = D I T MFD 

which implies p(MF(~))=p(MF) .  From Lemma 2.1 and the remarks just 
preceding this lemma we conclude that _V= _V ~. 

k e m m a  2.ft. Let Ve V and define 

For  ~ e _A, 

U N ( X  ) = E~ exp V 
J 

sup ~ ~(X) dUN(X)--UN_I(X)4< 
N x ~  X 

Proof. It suffices to show 

sup ~ ~(x) E~ exp V ] e x p [ V ( X N _ I ) ] - l l  < ~  
N x ~ X  j 

and this will follow, since V has finite support, if we show that for every 
y e X  

{IN2 ] } sup ~ ~(x) E; exp ~ V(X/) 6y (Xu_ , )  <O0 (2.16) 
N x ~ X  j = O  
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From Lemma 2.4, V =  _V ~, so we know 

1} E~ (~ exp ~ V(Xj) < oe 
j 0 

for every y e X. Hence, for every y e X, 

~(y) supEy C~) exp ~ V(Xj) 
N j 1 

= c~(y) sup ~ exp V(X/ 
N Xl,X2,. . . ,x N 1 j 1 

x ~.~,(~) ~ ,x~(~)" "  ~x. ~o_~(~) < o9 

Since ZCxy(C~ ) = ZryxC~(y)/c~(x), this last becomes 

sup ~ ~(XN_ 1) exp V(xj) 
N Xl,X2,...,XN I j 1 

X ~'~xIy~'~.~c2xI " " " ~,XN IXN_ 2 ~ ( ~  (2.17) 

Now, if we let Xu_~=x and XN_j=Xj ~ , j =  2, 3,..., N--1,  (2.17) states 
that for y e X, 

sup ~ ~(x)[exp V(x)] exp V(xj) 
N X,XI,?C2,...,XN_ 2 j 1 

X 7~xx lTTx lx2  �9 " " ~ x N  2Y ~ O0 

i.e., for all y e X, 

f l  N - - 2  sup ~ c~(x)E2 exp 
N x c X  j = 0  

V(Xi) ] 5y(XN 1)}<oe 

which is (2.16). 

Lemma 2.6. UN(X) --~ 1 as x ~ oe uniformly in N, i.e., for any 6 > 0 
there exists a finite set F such that x ~ F implies [1 -UN(X)[ < fi for all N 

ProoL For any V~_V, 

f l  N - - 1  E~ exp 
j = O  

vl ,l u xN,t=u,x  
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From Lemma 2.3 and (2.14) we then obtain 

- = v(&) UN(X)--E~ exp 
J 

<~sup~xu(x)<~const for all N and all x 
infx ~ x u( x ) 

Since, as noted in the proof of Lemma 2.3, V e V  implies 2V~_V for some 
2 > 1, we see that 

{E sup E ;  exp 2 ~ V ~<const 
x E X  j = O  

N 

for some 2 > 1. This shows the uniform integrability of {exp 5Z~=o 1 V(Xj)}. 
Now, one of our assumptions on the underlying chain is that 

l i m x ~ P 2 { r r < O 0 } = 0  for any finite subset FeX .  In particular, 
limx~oo P~{~{y) < 0o} =0 ,  but if y r  x, P~{rIy} < oo } =G(x, y)/G(y, y). 
Thus, we have G(x, y) ~ 0 as x ~ 0o for every y e X. 

Moreover, 

E~ ~ V(Xi) <~E~ I V(Xj)I = 2 G(x, y) [ r (y) l  
j = O  0 ~' y ~ X  

and, since V has finite support, we see that 

supEx ~ V ~ 0  as x --* oo 
N j 

This, together with the uniform integrability shown above, implies the 
lemma. 

I . e m m a  2.7. Let Ve y and c~ ~ _A. Then, 

lim ~ ~(x)[log UN(X) -- log UN-- I(X)] 
N ~ o o  x c X  

- ~ e(X)[UN(X)--UN_I(X)] = 0  (2.18a) 
x ~ X  

and, for any real 2, 

lim 
N ~ o o  

- 2  

~ ~(x){ [.~(x)y" - [u~_ ,(x)y "} 

~(X)[.N(X)-- uN_ ~(x) ] =0 
X E X  

(2.18b) 
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Proof. Let e > 0 be given. There exists a 6 > 0 such that I 1 -  xt < ~5 
and I1 - Yl < 6 imply 

Ilog x -  log y - ( x -  Y)I < e tx - y[ 

For  this 3, let F be the finite subset of X guaranteed by Lemma 2.6, so that 
I1 -Uu(X)l < 6 for all N provided x ~ F. To show the first part of (2.18), it 
suffices to show 

lim ~ e(x)[ log UN(X) --log b/N_ l(X)] 
N + o o  x e F  

- y, ~ ( x ) [ u ~ ( x ) -  uN 1(x)3 I 
x ~ F  

- -  2 + 2 i r a  e(x)[ log UN(X) -- log UN= I(X)] 
x ~ U '  

- y~ ~(x)[u~(x)- uN_,(x)] = 0 
x e U  

(2.19) 

Since limN~oo UN(X)= U(X)>0 for all x s X  and since summation over 
x ~ F is just a finite sum, the first term in (2.19) is zero. For  the second term 
in (2.19) we get, from our choice of ~ and F made above, 

lira ~ ~(X)[IOgUN(X)--IOgUN_,(X)] 
N ~ c o  xc/a, 

- Y~ ~(x)[uN(x)-.N ,(x)] 
x E U '  I 

~< l i m e  ~ e(x)tUN(X)--UN_I(X)I 
N ~  xeric 

~<esup ~ ~(X) IUN(X)--UN_I(X)[ 
N x E X  

In Lemma 2.5 we showed that the multiple of e in this last inequality is 
finite for any Ve_V and any a e d ,  so we have (2.19). The proof of the 
second statement in (2.18) is similar. 

kemrna  2.8. For Vs_V,e~_A, and a l l N = l , 2  ..... 

Z O~(X)[ (7"CUN)(X)  - -  U N ( X ) ]  = 0 ( 2 . 2 0 )  
~:E X 
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Proof. If we can justify changing the order  of summation,  (2.20) 
follows immediately from the fact that c~ is an invariant measure,  since 

= y~ ~(x)[u~(x)-l] 
x E X  

To justify the interchange, we show 

~. c~(x) I(~UN)(X)--11 < oo 
x ~ X  

which is implied by 

oz(x) lUx(X)-- 11 < oo 
,c e X 

(2.21) 

To show (2.21), we note  that  for any x e X and with F =  supp V, 

lUN(X)-- II = E~ exp V - 1 
J 

[ exp (N  ]] VII )] P~{at  least on XJ e F, j = 0, 1,..., N -  1 } 

= [ exp (N J[ vii )] [~Sx(f) + ~~ F) 

+ ~(%(x, F) + ' "  + ~z ~ -  t)(x, F ) ]  

where 

~(k)(x, F ) =  ~ rc (k) x y 9  

v e  F 

k =  1, 2,..., N -  1 

Thus, 

y, c~(x)luu(x)- 11 
~ c G X  

<<.e N"v" ~ = ( x ) [ 6 j F ) +  ~( l ) (x ,F)+ "'" + ~z (N ~)(x,F)] 
x 6 X  

But Zx~xa (X)  Fx(F) = ~(Y) and, for each k =  1, 2 ..... N -  1, 

_'r ~ X x c ,  J(  v ~  F y ~  F 
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Since F is finite and ~ is a a-finite measure, 

o~(x) tUN(X ) -- 1[ ~ e NIl VlINc~(F) < co 
x E X  

Although we have just shown that for each N, Z~+xC~(x) lUN(X)-- 11 < oo, 
in fact Z~+xC~(x)lu(x)--1I may be infinite. 

Lemma 2.9. Let V~ V and e e_A. Then, 

lim 
N ~  

y~ o~(x)[~(x)-uu_gx)] = ~ ~(x)(1 -e -a')) ~(x) 
x ~ X  . r e X  

Proof. First of all, 

+1} UN(X)=E~ exp V 
J 

= [exp V(x)] E~ exp V 
/ 1 

= [ e x p  V(x)] v~x~xyE.: exp --~o V(X/) 
. J 

= [exp V(x)] 2 ~ u N _ i ( y )  
y e  X 

: [exp g(x)](rcuN 1)(x) 

and therefore 

lim ~ ~(X)[blN(X)--blN_l(X)] 

= lim ~ O~(x)[eV(X)(TCtgN I)(N)--UN_I(X)] 
N - *  oo 

x ~ X  

= lim f ~ ~ 
N ~ o o  kx~X 

+ ~ ~(X)[(~UN_I)(Xl--uN ,(X)]} 
x E X "  

( 
= lim ~ ~ 0~(x)(1 --e-V(~)) UN(X) 

N ~ o o  <XGX 

x ~ X  
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The first term in this last expression is only a finite sum, since V vanishes 
outside a finite set, and so in this first term we can bring the limit inside the 
summation. Moreover, the second term goes to 0 as N - , o o ,  by 
Lemma 2.8. Hence, since V~ _V, 

lira ~, O~(X)[UN(X)--UN_I(X)]= ~ ~(x)(1--e v(x~)u(x) 
N ~ o o  x ~ X  x ~ X  

T h e o r e m  2.10. For Ve_V and c~ E _A, 

{ ]} l ima 1 log E e" exp j--~0 ~x nj(x) V(x) 

-- 2 c~(x){ 1 - e x p [ -  V(x)] } u(x) (2.22) 
x f f X  

for almost all n ( . ) e  Z (P~-measure). 

Remark. Although Tlaeorem 2.10 is stated and proved in a form in 
which the null set depends on Ve V, by an appropriate choice of a coun- 
table subset of _V and by using standard arguments one can obtain the 
existence of a single null set that works simultaneously for all Ve _V. 

Proof. From (1.1), 

E e" exp ~ nj(x) V(x) 
j x ~ X  

= FI E~ exp V 
x ~ X  t L j = O  

and therefore 

l ogE  -P" exp ~ ~ nj(x) V(x) 
j = 0  x ~ X  

]} =lx~xn(x) log E: exp j--~o V(Xj) 

To show that (2.22) holds for almost all n ( ' ) e  Z (P~-measure) means 
then to show 

lira 1 x~x U ~ o o N  n(X) IOgUN(X)= ~ o~(x)(1--e-V(X~)u(x) 
x E X  
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for almost all n(" ) ~ Z (P~-measure). For this it suffices to show that for all 
real ~ 

2irnoollogEe~{exp[2 ~xn(X) l~ 

=2  ~ c~(x){1--exp[-- V(x)]} u(x) 
x E X  

But 

1 
= ~ l o g  1-[ exp(ct(x){exp[2 log UN(X)] -- 1} 

x E X  

1 Z 
x ~ X  

and so we must show 

1 
lim~176 -~ x~x ~(x){ [UN(X)] ~ -  I }  

=2  ~ a(x)(1--e-VC'~)u(x) 
x f f X  

(2.23) 

From the usual Caesaro argument, (2.23) is implied by 

lim ~ Ot(X){[UN(X)] ~'- [UN_I(X)] ~} 
N ~ o o  x E X  

=). ~ c~(x)(1-e-V(:'))u(x) 
x ~ X  

(2.24) 

which follows from Lemmas 2.7 and 2.9. 

Lemma 2.11. If C c M is closed and 

) i m  1 l o g  Qn,N(C) 

V~ V o~  C k x c  X _ x ~ X  
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then 

lira log Qn,N(C) 
N ~ o o  

= - inf I~(o) 
o-EC 

Proof. First of all, one can obtain the desired result if C is compact, 
using methods developed in our earlier papers (cf. Ref. 1, for example). 

We now describe how one can go from the result for compact sets to 
closed sets. 

We begin by picking a V> 0 such that 

sup ~ G(x, y) V(y) = 0 < 1 
x V 

and 

~(x) V(x) ~ const < oe 
x ~ X  

With such a V we then have by Portenko's lemma (see Lemma 3.1 below) 
that u(x) = uv(x) ~ 1/(1 - 0). This implies 

F l o g  EP~E -p~ exp ~ V(x) nj(x) 
j x ~ X  

= lim y' O ~ ( X ) [ U N ( X  ) - -  blN__ I ( X ) ]  
N ~ o o  x E X  

= ~ a (x ) (1 - -e  -v(x)) u(x) 
x ~ X  

1 
~< T-Z-0_ 0 �9 const = K <  oo (2.25) 

Using a Chebycheff argument, we obtain from (2.25) 

P~ n('):Q~,u ~ ~,, V(x) nj(x)>~L >~e -~u <~e xu+~u-tu (2.26) 
j = O  x E X  

Now, (2.26) implies 

t lim imoo ~ ~ ~ 2 V(x)nj(x)>~L = - o e  (2.27) 
j = O  x E X  

a~d (227), together with the fact that {o': Zx~x  V(x)a(x)<.L} is a com- 
pact set in the vague topology, implies the lemma. 
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3. P R O P E R T I E S  OF T H E / - F U N C T I O N  

In this section we prove various properties of I~(a) given by (1.5). 
Some of these results are necessary for establishing the lower bound (1.3) 
and will be used in the next section, where the lower bound is proved. 
Other properties of Is(o) proved here are of separate interest. 

As noted earlier, the Green's function G(x, y ) < o o  for all x, y~2(, 
since the {~xy} chain is transient. If y r x, P~{z{y} < oo} = G(x, y)/G(y, y), 
and therefore our hypothesis o n  P=x{~F< oO } implies 

G(x,y)-+O as y ~ o o  f o r a n y x 6 X  
(3.1) 

G(x,y)~O as x ~ o o  f o r a n y y ~ X  

We also recall that we are assuming 

sup G(x, x) < oo (3.2) 
x , E  X 

Both (3.1) and (3.2) will be used in this section. 

Lemma 3.1. 
and be such that 

Let V: X ~  R vanish outside some finite subset of X 

<~ Or! 

V(Xi~) I } 

Z E~{IV(X,,)I tV(X,2)I ... !V(X,r ,)1 
i l  <~ i2 ~ " '"  <~ i r - 1  

(3.3) sup ~, G(x, y) IV(y)] ~<0< 1 
X ~ X  y ~ X  

Then, V~V and I i -uw(x)[  ~<0/(1-0) for each x~X. 

Proof. Let r/> 1 and consider 

E~{ [ V(Xo)+ V(X,)+ ." .]r} 

<.E~{EIV(Xo)I + [ V(X,)I + ...]r} 

= E~ t Y~ ' V(X'I)'' V(X'2)'"" V(X'r)' 1 
t t l  t2 t ) 

~< r! E~ I • I V(X/,)l I V(X,Ot... 
k i l  <~ i2 <~ " '"  <~ ir 

Z E~IIV(Xi,)I I V(X/2)I ~<r! 
i l  <~ i2 <~< . . -  ~ i r _  1 L 

x " 1  v(x,r_~)l g ~ IV 
Xir  - 1 j 0 
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the last inequality following from (3.3). If we keep repeating this process, 
we end up with 

E~{ [V(Xo) + V(X1) -{- ,..~]r} ~ Orr! 

and thus 

]l--uv(x)]= l - E 2  exp V 
k Lj=O 

which implies uv(x)< 0% so that Ve_V. 

~ O~r! 0 
<~ r! l - 0  r = l  

Lemma 3.2. Let Xl, x2,... , x N be a finite subset of X for which 
G(xi, xi)<~C, i = l ,  2,...,N, G(xi, xj)<~e for all ire j, i , j=l,2,. . . ,N. Let 
7 > 0  be so small that 7 [ C + ( N - 1 ) e ] = O < I .  Let e e A .  For any oe_M 
such that I~(a)< l, we have 

Proof. Let 

e~-lI~=fof fxi) l (1-10~O) , 
? i Y 

N 

-< Z 
i = 1  

l I]( 1_--00)' ~(xi 1 + + -  
7 i 1 ? 

V(x)___J" 7 if x=xi ,  i = l ,  2,...,N 
otherwise 

Then, using the maximum principle, 

(3.4) 

sup y" G(x, y) V(y) 
x E X  y e X  

= sup • G(x,, y) V(y) 
l <~ i~N y r  

N 

= y  sup Z G(x,, xj) 
l < . i < ~ N j = l  

~<7[c+  ( N -  1)e] = 0 <  1 

Hence, from Lemma 3.1, for the V just selected, Uv(X)~< 1 + 0 / ( 1 -  0), and 
Ve _V. Since a e M is such that Is(a) <~ l, we then have for this V, 

a(x) V(x) -  ~ offx)(1-e-V(X))Uv(X)<~l 
x e X  x ~ X  
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i.e., 

7 ~ o ( x , ) - ( 1 - e - ~ )  ~(xi) 1+ <~l 
. =  i = 1  t 1 

o r  

](O), 
~(x,) ~<- ~(x~) 1 + + -  

i=1 7 ,= 1 7 

If we choose instead 

--7, x = x i ,  i =  l, 2,..., N 
V(x)= 0, otherwise 

then again Lemma3.1 implies this V~V also and u v ( x ) ~ l - O / ( 1 - O ) ,  
which, by the same argument as above, leads to the inequality on the left of 
(3.4). 

T h e o r e m  3.3. Let ~ e _A and a E M such that I~(a)= l <  ~ .  Then: 

1. If, for some sequence {y,} --* 0% ~ ( y , ) ~ 0 ,  then a(y,)--*O. 

2. If, for some sequence {yn}--*oo, 7 (y , ) - -*L>0 ,  then a ( y , ) ~ L  
also. 

3. If, for some sequence {y,} ~ 0% ~(y,) --, oo, then ~(yn)/a(y,,) --* 1. 

These three statements combine into: If {y,} ~ ~ ,  then E1 +~(Yn)]/ 
[1 + ~ ( y . ) ]  ~ 1. 

Proof. We prove each of the three statements. First assume for some 
sequence {y,} --, ~ ,  ~(y,)-~0.  To prove statement 1, we assume the con- 
trary, i.e., there exists 6 > 0  such that a(y,)~> 6 for all n. From (3.2) let 
SUpx~xG(x , x )<C and let e > 0  be given. Let 7o be so small that ~<?o 
implies 

l - e - ' (  7 (C+1)  ) 
1-~ < 2  

Choose 7>0 ,  but ? < m i n ( 1 / 2 ( C + l ) ,  7o). Choose N so large that 
l/Ny < e/2. Because we are assuming here that a(y, ) -~ 0 and because of 
(3.1) we can choose N elements x~, x2,..., xN in X such that G(x~, xj) <~ 1/N 
for i C j, i, j =  1, 2, . ,  N, and such that a(xj) <~ ~/4, j =  1, 2 ..... N. 

Now, 

7 [ C +  ( U -  1)(l/N)] ~<7[C+ 1] = 0 <  1/2 
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and hence from Lemma 3.2, 

N 1 - - e  - ~  
Na ~< ~ o-(x~) ~< 

i = 1  ~) 

? ( C + I )  )Ne__ l Ne l 
1-~ 1--~C-~--1) 4 + 7  ~<-~+-7 

i.e., 

Since e > 0 is arbitrary, we have a contradiction and statement 1 is proved. 
To prove statement 2, suppose { y , } ~  such that ~ ( y , ) ~ L > 0 .  

Again we assume the contrary, i.e., there is a subsequence of {y,,}, which 
we will again label {y,,}, such that either o - ( y , ) > L '  > L  for all n = 1, 2 ..... 
or o-(y,) ~< L' < L for all n = 1, 2 ..... For  the first case, let e > 0 be given and 
choose ~ > 0  so small that ~[-C+ 1] = 0 <  1/2 and 

1 - e  7 I Y(C+ 1) 1 l q  < 1 + ~  

Choose N so large that l/Ny < 5. For that N we can find points xl ,  x2,..., XN 
such that G(xi, xj) <~ 1/N for all i # j, i, j =  1, 2,..., N, and such that ~(xj) <~ 
L + e. Thus, from Lemma 3.2, 

N 

NL' <. ~ a(xi)<~N(L +~)(l +t)+l /7  
i = l  

o r  

L' <~(L +e)(1 +e)+e 

Since e > 0 is arbitrary, this contradicts L ' >  L. A similar argument using 
the lower estimate in Lemma 3.2 takes care of the second case, L' < L, and 
statement 2 is proved. 

Finally, to show statement 3, let {y,} ~ ~ be a sequence such that 
~(y,)--* ~ .  Again assuming the contrary, suppose there is a subsequence 
{y,} such that ~(y , )  >~ 2a(y, )  for some 2 >  1, n =  1, 2 ..... or ~(y~) ~<2~(y,) 
for some 2 < 1, n = 1, 2 ..... Take the first case, and use the upper estimate of 
Lemma 3.2 with N = 1. Choose ~ > 0 so small that yC = 0 < 1 and 

7 1+  < 1 + ~  
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where e > 0 is given. Choose  M > 0 so large that  l/M7 < 5/2. Now,  there is 
an x e X for which c~(x) > M. Hence  f rom L e m m a  3.2 for this par t icular  x, 

7 1 + + 

and since 8 > 0 is arbi t rary,  this contradicts  a(x)/~(x) >/2 > 1. Similarly, of 
course, for the other  alternative, and the p roof  is complete.  

L e m m a  3.4 .  Let  c~ e _A and f le  _A. Assume for some o- e _M that  bo th  
I~(o-) < oo and Ir < oo. Then c~ -= ft. 

Proof. First we want  to prove  the following: if ~ e A and f le  d and if 
h(x) = fl(x)/c~(x) ~ 1 as x --* o% then c~ - ft. 

As in Section 2, let fOxy(C0 = ~y~e(y)/e(x) and recall that  {~xy(e)} are 
transi t ion probabil i t ies for an irreducible chain. Now,  

~(Y) fl(Y) 
Z~xy(O~ ) h ( y ) =  L ~yx~-~x ] 

~ x  ~ x  , , ~(Y) 

1 o ,  , = h ( x )  

y E X  

so that  h is a ha rmonic  function of the chain t ime-reversed with respect to 
~. By hypothesis,  h(x) ~ 1 at 0% but, for an irreducible M a r k o v  chain, if a 
bounded  ha rmonic  function approaches  1 at infinity, it is then identically 1. 

Now,  to prove  this lemma,  we have f rom Theorem 3.3 that  {y ,}  --. oo 
implies [1 + ~ ( y , ) ] / [ 1  + ~ ( y , ) ]  --* 1 and also [1 + ~ ( y , ) ] / [ 1  + f l ( y , ) ]  ~ 1, 
i.e., [1 +c~ (y , ) ] / [ 1  + f l ( y , ) ]  ~ 1. Since, by hypothesis,  {~xy} is doubly  
stochastic, we see that  1 is an invar iant  measure  for the ~-chain, i.e., 1 e _A. 
Since the sum of two invariant  measures  is also an invar iant  measure,  the 
s ta tement  at the beginning of this p roof  implies 1 + c ~ ( . ) - 1  + fl(.), i,e., 

Let ~ ~ _A and a e _M such that  I~(a) < oo. Then, for all L e m m a  3.5.  
y~X,  

lira ~ cr(x) g(k)= e (y )  (3.5) x y  
k ~ c ~  x ~ g  

Proof. As noted  in the preceding lemma,  since {~xy} is doubly  
stochastic, 1 is an invar iant  measure,  and therefore to show (35) ,  it suffices 
to show 

lim ~ [ a (x )  + 1 ] ~(fy) = ~(y)  + 1 (3.6) 
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for all y e X. Let 

Now 

~(x)  + 1 ~(y)  + 1 
h(x) = ~(x) + 1'  ~ = ~ ~(x) +-------7 

~!L) = ~(~, ~ (y )  + 1 
-- ~(x) + 1 

and 

a(y) + 1 ~%)[a(x) + 1 ] [a(x)+l]~r(~k}= Z ~ ( x ) + l  �9 
x E X  x ~ X  

=[~(y)+l] E h(x)'~!v'? 
x~X 

= [_~(y)+ 1] E~{h(Xk)} 

As we have argued several times already, the ~-chain is also transient, 
which implies, for every y ~ X, Xk ~ ~ for almost all paths starting from y 
(~-measure). Moreover, from Theorem 3.3, h ( x , ) ~  1 if x k ~  o% so by 
bounded convergence limk~o~ Ey{h(Xk)}  = 1 and we have (3.6) for all 
y ~ X and the lemma. 

We now prove a succession of lemmas leading up to Theorem 3.11, 
which will be used in Section 4 in order to prove the lower bound (1.3). 

In these lemmas as well as in Theorem 3.11, F will denote a fixed, 
finite subset of X having elements xl ,  x2,..., x , .  Let 0 = {0~, 02 ..... 0~} be a 
point in R k and let C = { V: X-~ I~ }. Let T: R k --* C be the mapping given 
by 

V(xi) = Oi, i= 1, 2,..., k 

V(x)  = O, x ~ xi 

Let Q E R k consist of those 0 e R k such that TO e_V. For  ~ ~ _A and 0 ~ Q, 
define 

k k 

~(0) = q~F(O)= ~ ~(X~)(1 - - e - ~  u(O; x~)-- ~ ~(x~) Ot 
i = 1  i = 1  

where, of course, 

]} u(O; xi) = uv(xi)  = E2, exp j-~o V(Xj) 

with V= TO. 

822/46/5-6-28 
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In the first of these lemmas we use the notation of Section 2. Recall 
that Tc F - P ~ { X  - ' "  = infix> ~{Xjc F}, and ~y  - - x t  ~ - Y ,  ~ < c o  }, where z 

F = P ~ { X j r  1} q x = l -  ~ 7r~y 
y e F  

For the time-reversed chain with respect to an c~e A, i.e., the chain with 
transition probabilities ~xy(e)= 7cy~c~(y)/~(x), we use the notations 

F __ n(~)  ~xy(C0 -- P x { Z , =  y; ~ <  o0} 

= -- rCx~(CQ=P;(~){XjCF, j )  1} 
v e F  

as before. 

Lemma 3.6.  F o r ~ e _ A  a n d 0 e Q ,  

k k k 

~)F(O) = E O~(Xi) ~xi (O~) Ll(O'~ Xi )  - -  E O{(Xi) ~ x , . -  E O~(Xi) Oi 
i = 1  i = 1  i = I  

Proof .  

x e X ,  

Thus, 

(3.7) 

Since 0 e Q, Ve _V and therefore from (2.6) we have for any 

u v ( x )  = e v(x) ~xyU 

c~(x)(1 - - e  v(x))Uw(X) 
x e  X 

= ~2 ~(x)(1 - e  -V(x)) uv(x) 
x e F 

y e F  L x ~ F  x e F  

For x, y e F ,  

(3.8) 

F _ 
T~xy --  T~xy "+" E TCxzI ~z ly  ~- E Ts ~7~ZlZ2 7~'z2_v AU "'" 

z tCF z lCF 
zzdA F 

= T~(lv) _~_ Tg(2) _1_ . , ,  nt_ (n) _ xy "lT, xy AV " " " 
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and therefore 

F 

x E F  

xeX x ~ F  

x C F  x ~ F  

x C F  v ~ F  ,n=2  

(,7) 

. v ~ F z I ~ X  x E F  n = 2  

: E E ~(ZI) ' /~z lxT~ ...... 
x C F z l 4 S F  

x m F  n = 2  Z l f ~ F  

. v g ~ F z l C F  x ~ F  n = 3  

If we repeat this process we arrive at the fol lowing expression, which holds 
for any n = 1, 2,...: 

F ~(y)-- E ~(x) = . . . .  

.v~ F 

: E O ~ ( Z I ) T C z I z 2 T ( ' z 2 z 3  " ' ' T ~  . . . . .  

z I , z2 , . . . , z  n r F 

- S ~(x) ~ lt!~] (3.9) 
v ~ F  k = n + l  

Letting n ~ oo in (3.9), we see that (cf. proof  of Lemma 2.3) 

F 

x e F  

= lim ~ 0~(Zt) T[zlz27~z2z3'''77s 
n ~  o(3 Z i , z 2 , . , , , Z n ( i  F 

= lim ~ c~(y) ~_vz,(~) ~ , ~ 2 ( ~ ) " '  ~ , _  >,.(~) 
n ~ oo Zl,Z2,Z3,_.,zn~_ F 

: c~(y) ~y(~) (3.1o) 
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Using (3.10) in (3.8), we get 

Therefore, 

e(x)(1 - e v(~))Uv(X ) 
xEX 

= ~ ~(y),~(~)~.(y)- Z ~(x)~ 
.v~F v6F 

k k k 

~)F(O) = Z O~(Xi) ~xi(0~) hi(O; X i ) -  Z O~(Xi) "x , -  Z O~(Xi) Oi 
i=l i = 1  i = 1  

which is the lemma. 

k e m m a  3.7. o is an open, convex set in R ~, 45(0) >7 0 for 0 e Q, and 
if ~ e R ~ such that (} e 0Q and 0 (") ~ ~} as n ~ ~ ,  then 45(0 (")) ~ oo. 

ProoL In Section 2 we noted that if Ve_V, there exists , i>  1 such 
that 2Ve_V, which implies Q is open. From Lemma 2,1, _V=V2, so Ve_V 
implies p ( M  r) < 1, where M g is the matrix { e v(x)rrF x, y 6 F}. Since here F ,v .vy, 

is fixed, p(Mp) = p(0) and 0 e Q implies p(0) < 1, i.e., the convex function 
log p ( 0 ) <  0 for 0 E O, which implies Q is convex. That 45(0)>~ 0 for 0 e Q 
follows by applying Jensen's inequality to the definition of @(0). 

Although Q is open and convex, it is not bounded, and indeed we later 
must examine the behavior of @(0) as 0 stays in Q but approaches oo. Here 
the sequence {0I")}EQ converges to the finite point 0cOQ. In the 
definition of 45(0), the term 

k 

a(xi)(1 - e  -~ u(0; xi) 
i = i  

is troublesome because, depending on the signs of the 0i, some terms are 
positive and some negative, presenting possible cancellations. This problem 
is obviated by the decomposition in Lemma 3.6. Thus, 

k 

45(0~'0 = ~ ~(x~) rlx,(~) u(O~"); x,) 
i = 1  

k k 

- ~ ct(xi)~/x~- ~ ~(x~)0} ") (3.11) 
i = l  i = 1  

In (3.11) not all of the factors qx,(c0, i =  1, 2 ..... k, can be zero, because the 
chain time-reversed with respect to c~ is transient. Since Q is open, ~ ~ Q, 
and hence u((}; xi) = c~, i = 1, 2 ..... k. From Fatou's lemma, we see then that 
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u(0(n);xi)~ ~ as 0 ( " ) ~  for i =  1,2,...,k. Thus, the first term in (3.11) 
becomes infinite as 0 ~n) ~ ~ and so ~b(0 on)) ~ ~ as 0 ~n) -~ 0, completing the 
lemma. 

Now we must examine the behavior of ~b(0) as 0 -~ ~ .  There exist rays 
along which q~(0) remains bounded and we have to take these into account 
in what follows. To this end, we define a point a ~ R k to be special if 
supx > o ~(2a)  ~< const. Let S = {a ~ R ~, a special ). Clearly, S ~ Q. 

k e m m a  3.8. If a e S ,  then - a e S  and q~(a)=0. S is a linear sub- 
space of R k and if b ~ Q and a ~ S, then b + a ~ Q and ~(b + a) = ~(b). 

Proof. From the definition of q~(0) we see that it is convex and 
~b(0) = 0. Thus, if qS(2a)~< c for all 2 > 0 ,  then qS(2a)_=0 for all 2 > 0 .  Since 
(b is analytic in 0, we have (b()~a)=-0 for all real 2. To show that S is a 
linear subspace, it suffices to show that a l e S  and a2 ~S  imply 
�89 + a2)~:S. But 

0 ~ \  2 ] "~2  [q~(a ' )+q~(a~) ]=0  

so not only is S a linear sub@ace, but ~b(0)=-0 for 0 e S. 
Let b ~ Q and a e S. Since Q is open, there exists e > 0 small enough so 

that [1/(1 - e ) ]  b E Q. By definition, ( I /e )a  e S ~ Q and since Q is a convex 
set, 

b + a =  ( l - e )  1 - e  

By the convexity of ~ and since ~ ( a ) =  O, we have 

q~(a + b) ~< (1 - e) q~ ( f - ~ _  e) 

Convex functions being continuous, we obtain from this that 

q~(a + b) ~< ~(b) for all a e S and b ~ Q (3.12) 

In (3.12) we can replace a by - a ,  giving ~b(b-a)~< qS(b) for all a e S and 
b e Q. But we just showed a + b e Q and therefore this last inequality gives 
qS(b) ~< q~(a + b), which, together with (3.12), finishes the lemma. 

We have noted that S ~  O. Let Qo = {0'~ Q, O' L S), so Qo is a closed 
subset of Q, and any 0~ Q can be written 0 = 0 ' + a ,  where 0 ' e Q 0  and 
aES.  

k o m m a  3.9, Let {0 ~)} eQo such that II0(")1/~ ~ .  Then, 
~(0 (")) --, oo. 
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Proof. Assume the contrary; then, there exists a constant C such that 
r <")) ~< C for all n. For 2 > 0, 

[ 20r ~ 
~ \ , ,0<.) , , /= ~ ( ~  0<., + (1 2 ,,0<~),,) "0) 

2 

C2 

ito<.)11 

which implies as n--, oo. Since Qo is closed and, for 
each n, [[0<")/]10<") u I[ = 1, there exists a subsequence, which we will label 
0<")/1[0<")[1, converging to some element a ~ Qo such that I[aH = 1. Since ~ is 
continuous, we have for all 2 > 0, r 0, which means a is special. But 
a ~ Qo means a l a, which is impossible, since a is a unit vector. 

L e m m a  3.10. Let c ~ A  and ~r~M such that I=(~)<oo. If a e S ,  
then 

k k 

T,  Ixi) ai--  (xi) ai 
i= l  i--I 

Proof. 

I~(r lx~xa(x) V(x ) -  ~ ~ ( x ) ( 1 - e  v~X')Uv(X)] 
V~V x ~ X  

>~ sup a(xi) 0i-- ~(xi)(1 - e-~ u(0; xi 
0 ~ O  i 1 i = 1  

since the first supremum is over V's vanishing outside any finite subset of 
X, whereas the second supremum is just over V's vanishing outside our 
given finite subset F. 

Thus, using the fact that r = 0  for a E S, 

I = ( r  ~> sup cr(x~) 0 i - 2 ~ ( x i )  O i -  ( 1 0 F ( 0 )  

O ~ Q  i 1 i = l  

>~ sup cr(xi) ai- ~ ~:(xi) ai- qSF(a 
a e S  i 1 i = 1  

= sup cr(xi) a i -  e(xi) ai 
a ~ S  i 1 i = 1  

Since S is a linear subspace, this last supremum is either oo or 0. The for- 
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mer is ruled out by our hypothesis I=(a)< (~, and hence we have this 
lemma, because 

k 

sup ~ [ a ( x , ) -  a(xi)] ai = 0 
a E S i = I  

implies 
k 

S [0 - (X i )  - -  O~(Xi) ] a i = 0 identically i n  S 

i = 1  

Thooram 3.11. Let ~ �9 _A and a �9 _M such that I~(a) < oo. Let a ' =  
( 1 - e )  a+ec~ for e > 0  fixed, and let F be a finite subset of X. In the 
variational problem 

sup a'(xi) Oi- ~', ~(xi)(1-e-~ (3.13) 
0~_O i 1 i=1  

the supremum is attained at a point 9 * � 9  Q. 

Proof. Since e�9 I~(e)=0,  and the convexity of the /-function 
implies 

I~(a') ~> sup a'(xi) Oi- c~(xi)(1-e-~ 
0~_O i 1 i=1  

we see that the supremum in (3.13) is finite. Also, since 0 �9 Q, we see that 
the supremum in (3.13) is nonnegative. 

With qSg(0 ) as defined earlier, we can write (3.13) as 

sup a'(xi) Oi- ~(xs) Oi- q~e(O (3.14) 
0 ~ 0  i 1 i = l  

As noted before, for any 0E_O we can write 0 = a + b ,  where a � 9  and 
b�9149 0'_LS}. From Lemma3.8, ~ ( a + b ) = ~ ( b ) .  Since 
I~(~')< o% for this a e S  we have from Lemma 3.10 that ~ = ~  e'(xi)ai= 
~ki=l ~(xi)ai. Thus, (3.14) becomes 

s u p  a ( x i )  b i - o ~ ( x i )  b i - ~ F ( b  
b~_O0 i i i=1  

be  O0 i =  1 

- ( 1 - ~ 1  2 ~(x~)b~- 2 ~(x3(1--e-b'lu(b;x~) + ~(x,)b, 
i = i  i=1  i=1  

= s u p  ( 1 - ~ )  a(x~)bi- ~ ~(x~)(1--e-bOu(b;xi) --e~F(b) 
be_O0 i 1 i=1  

(3.15) 
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Let b (') be a maximizing sequence in Q0- There are three possibilities: 
(1) IIb(')ll--+ ~ ,  (2) b(') ~ b E  ~3Qo, or (3) b(')--+ 0 *, a point in QocQ. 

Assume possibility 1 first. By hypothesis, 

~ >I~(a)J> sup a(xi)bi- ~ a(xi)(1--e-b~)u(b;xi) 
bc_O0 i 1 i = 1  

so that in the last line of (3.15) the quantity in square brackets is bounded, 
whereas Lemma 3.9 gives u s  ( ibF(b(n))  -+  oo. Hence, in the last line of (3.15) 
the quantity in curly braces goes to - ~ as [Ib(')ll --+ ~ ,  which contradicts 
the supremum in (3.13) being nonnegative. 

Next, assume possibility 2 holds. From Lemma 3.7, ~F(b ('))--) c~ if 
b (') --+ b ~ 8Q0 c (3Q, and, just as above, the quantity in square brackets in 
the last line of (3.15) remains bounded. Thus, the quantity in curly braces 
in the last line of (3.15) again goes to - ~  as b ( ' ) ~  b~{OQ o, which gives 
the same contradiction, and the proof is complete. 

4. T H E  L O W E R  B O U N D  

Let ~ ~_A. To prove the lower bound (1.3), it suffices, since G is open, 
to show that for any a ~ _M such that I ,(a) < ~ ,  

l l o g  Q,,,N(N,~) >1 -I~(a) (4.1) lim 
N ~ < z o  

for almost all n(.)~Z (P~-measure), where N~ is any _M-neighborhood 
of o-. 

We can choose e > 0  so small that a ' = ( 1 - e ) a + ~ c ~  is an dement of 
N~ and then we can choose an _M-neighborhood of o-', call it No,, such that 
N~, c No. Moreover, since the /-function is convex and I~(c 0 = 0, we see 
that 

I~(a') ~< (1 - e) I~(a) + eI~(~) <~ I~(a) 

Thus, to show (4.1), it suffices to show for (r' of the form above and any M- 
neighborhood N~, of a'  that 

lim NlOg Q,,N(N~,) >>- -I~(a') (4.2) 
N ~ o o  

for almost all n ( ' )~  Z (P~-measure). 
Sets in M of the form 

B . ,=  {)~(')~ _M: [2(x)-a'(x)l < 6  for all x~F, a finite subset of X) 
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form a basis for the weak topology  in _AM, so that,  to show (4.2), it suffices 
to show, for any set B~, in the basis and a ' =  ( 1 - e )  a + ~ ,  that  

for a lmost  all n(. 
With  this in 

x l ,  x2,..., xk. Let  
V: X ~ N defined 

lim l l o g  Q,,,N(B,,,) >1 -I~(a') 
N ~  

(4.3) 

) e Z (P~-measure).  
mind, we let F be a finite subset of X having elements 
Q ~ R  ~ be the set of 0 ~ R  k having the p roper ty  that  
by 

V(x)=fOi if x=xi ,  i = 1 , 2  ..... k 
10 otherwise 

is in _V. As noted in Section 3, Q is an open set in R k. For  each N = I, 2 ..... 
define a probabi l i ty  measure  [.t N on R ~ by: if A ~ R k, 

Let 

#N( A ) -'= -Pn { (LN(Xl) ,  LN(X2) ..... LN(Xk)  ) ~ A } 

which exists if 0 e Q. Wha t  is impor t an t  is that, if ~ e _A and 0 e Q, we have 
f rom L e m m a  2.10 that  

lim 1 log MN(O ) 
N ~ o e N  

= l i r a  N log E 

= lira log E p" exp Oinj(x i 
N ~ o o  "- I - j = 0  i = I  

= lim log E e~ exp Z nj(x)V(x) 
N~o~ j x~X 

= ~ ~ ( x ) { 1 - e x p [ -  V(x)} Uv(X) 
X ~ X  

k 

= Y'. ~(xi)[1 - e x p ( -  0i)] u(0; xi) = ~(0) 
i = 1  

for a lmost  all n ( ' ) e  Z (P~-measure).  
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We note that r is continuously differentiable on Q. For ~e_A, 
~e_M such that I~(a)<oo,  and with a ' = ( 1 - e )  cr+ect, we proved 
(Theorem 3.11) that in the variational problem, 

sup a'(xi) 0 , -  r 
0 ~ 0  i 1 

the supremum is actually attained at a point 0* ~ O. This, of course, implies 
(V~h)(0*) = ~', where ~ ' =  (a'(xi), i =  1, 2 ..... k). 

All of these observations become important because of the following 
1emma, which is a standard, general result, the proof of which can be 
found, for example, in Ref. 10. 

L e m m a  4.1. Let {]AN} be a family of probability measures on R k 
and assume 

MN(O ) = J exp(N(0, y}) dUN(y ) 

exists for 0 belonging to an open set 0 c R k. Assume also that 

l i r n  l l o g  MN(0=O(0) 

exists for 0 e O and that 0(0) is continuously differentiable in O. Finally, 
assume t~'e R k is such that (V~,)(0*)= ~' for some 0*E O. Then, 

1 
lim -- log #N(N,,,)/> --[ (t~', 0* ) -- 0(0")]  

U~2oN 
(4.4) 

where N,, is an R k neighborhood of t~'. 
Since, as we just noted, all the hypotheses of Lemma 4.1 are satisfied, 

we conclude that 

1 
]i_m_ F l o g  pu(N,,,) 

= lim l l o g  Pn{(LN(Xl), LN(X2),... , LN(Xk))EN,s, ) 
~S-~ N 

= lim l l o g  Q~,N(N~,) 
N ~ o o  

> / - [ ( ~ ' ,  o* > - 0(o*)]  

= - sup a'(xi) Oi- r 
0 ~ O  i 1 
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for almost all n(.)eZ (P~-measure). But 

'~(a ' )= sup I ~ o- ' (x)V(x)-  ~ ~(x ) (1 -e  v~))uv(x)] 
V ~  V x e X  x e X  

I 1 = sup ~ ~'(x,) 0,--~9(0) 
~e_O L i = I  

(4.5) 

because the first supremum is over V's vanishing outside any finite subset 
of X, whereas the second supremum is just over V's vanishing outside a 
fixed, finite set F. From (4.4) and (4.5) we have 

lira 1 
U--~o F l~ Q,,N(N,,) >~ -L~(a') (4.6) 

for almost all n( . )e  Z (P~-measure). 
Now, since F was any finite subset of X, and since N,, is any R k 

neighborhood of a', we see that (4.6) implies (4.3) and hence the lower 
bound (1.3). 
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